3.2475 \(\int \frac{(A+B x) (d+e x)}{(a+b x+c x^2)^{3/2}} \, dx\)

Optimal. Leaf size=126 \[ \frac{2 \left (-x \left (2 c (A c d-a B e)-b c (A e+B d)+b^2 B e\right )-b (a B e+A c d)+2 a c (A e+B d)\right )}{c \left (b^2-4 a c\right ) \sqrt{a+b x+c x^2}}+\frac{B e \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{c^{3/2}} \]

[Out]

(2*(2*a*c*(B*d + A*e) - b*(A*c*d + a*B*e) - (b^2*B*e - b*c*(B*d + A*e) + 2*c*(A*c*d - a*B*e))*x))/(c*(b^2 - 4*
a*c)*Sqrt[a + b*x + c*x^2]) + (B*e*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/c^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.0642382, antiderivative size = 126, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {777, 621, 206} \[ \frac{2 \left (-x \left (2 c (A c d-a B e)-b c (A e+B d)+b^2 B e\right )-b (a B e+A c d)+2 a c (A e+B d)\right )}{c \left (b^2-4 a c\right ) \sqrt{a+b x+c x^2}}+\frac{B e \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{c^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[((A + B*x)*(d + e*x))/(a + b*x + c*x^2)^(3/2),x]

[Out]

(2*(2*a*c*(B*d + A*e) - b*(A*c*d + a*B*e) - (b^2*B*e - b*c*(B*d + A*e) + 2*c*(A*c*d - a*B*e))*x))/(c*(b^2 - 4*
a*c)*Sqrt[a + b*x + c*x^2]) + (B*e*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/c^(3/2)

Rule 777

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((2
*a*c*(e*f + d*g) - b*(c*d*f + a*e*g) - (b^2*e*g - b*c*(e*f + d*g) + 2*c*(c*d*f - a*e*g))*x)*(a + b*x + c*x^2)^
(p + 1))/(c*(p + 1)*(b^2 - 4*a*c)), x] - Dist[(b^2*e*g*(p + 2) - 2*a*c*e*g + c*(2*c*d*f - b*(e*f + d*g))*(2*p
+ 3))/(c*(p + 1)*(b^2 - 4*a*c)), Int[(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && N
eQ[b^2 - 4*a*c, 0] && LtQ[p, -1]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(A+B x) (d+e x)}{\left (a+b x+c x^2\right )^{3/2}} \, dx &=\frac{2 \left (2 a c (B d+A e)-b (A c d+a B e)-\left (b^2 B e-b c (B d+A e)+2 c (A c d-a B e)\right ) x\right )}{c \left (b^2-4 a c\right ) \sqrt{a+b x+c x^2}}+\frac{(B e) \int \frac{1}{\sqrt{a+b x+c x^2}} \, dx}{c}\\ &=\frac{2 \left (2 a c (B d+A e)-b (A c d+a B e)-\left (b^2 B e-b c (B d+A e)+2 c (A c d-a B e)\right ) x\right )}{c \left (b^2-4 a c\right ) \sqrt{a+b x+c x^2}}+\frac{(2 B e) \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x}{\sqrt{a+b x+c x^2}}\right )}{c}\\ &=\frac{2 \left (2 a c (B d+A e)-b (A c d+a B e)-\left (b^2 B e-b c (B d+A e)+2 c (A c d-a B e)\right ) x\right )}{c \left (b^2-4 a c\right ) \sqrt{a+b x+c x^2}}+\frac{B e \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{c^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.409841, size = 127, normalized size = 1.01 \[ \frac{\frac{2 \sqrt{c} (A c (-2 a e+b (d-e x)+2 c d x)+B (a b e-2 a c (d+e x)+b x (b e-c d)))}{\sqrt{a+x (b+c x)}}-B e \left (b^2-4 a c\right ) \log \left (2 \sqrt{c} \sqrt{a+x (b+c x)}+b+2 c x\right )}{c^{3/2} \left (4 a c-b^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*x)*(d + e*x))/(a + b*x + c*x^2)^(3/2),x]

[Out]

((2*Sqrt[c]*(A*c*(-2*a*e + 2*c*d*x + b*(d - e*x)) + B*(a*b*e + b*(-(c*d) + b*e)*x - 2*a*c*(d + e*x))))/Sqrt[a
+ x*(b + c*x)] - B*(b^2 - 4*a*c)*e*Log[b + 2*c*x + 2*Sqrt[c]*Sqrt[a + x*(b + c*x)]])/(c^(3/2)*(-b^2 + 4*a*c))

________________________________________________________________________________________

Maple [B]  time = 0.004, size = 341, normalized size = 2.7 \begin{align*} -{\frac{Bex}{c}{\frac{1}{\sqrt{c{x}^{2}+bx+a}}}}+{\frac{bBe}{2\,{c}^{2}}{\frac{1}{\sqrt{c{x}^{2}+bx+a}}}}+{\frac{{b}^{2}Bex}{c \left ( 4\,ac-{b}^{2} \right ) }{\frac{1}{\sqrt{c{x}^{2}+bx+a}}}}+{\frac{{b}^{3}Be}{2\,{c}^{2} \left ( 4\,ac-{b}^{2} \right ) }{\frac{1}{\sqrt{c{x}^{2}+bx+a}}}}+{Be\ln \left ({ \left ({\frac{b}{2}}+cx \right ){\frac{1}{\sqrt{c}}}}+\sqrt{c{x}^{2}+bx+a} \right ){c}^{-{\frac{3}{2}}}}-{\frac{Ae}{c}{\frac{1}{\sqrt{c{x}^{2}+bx+a}}}}-{\frac{Bd}{c}{\frac{1}{\sqrt{c{x}^{2}+bx+a}}}}-2\,{\frac{Abex}{ \left ( 4\,ac-{b}^{2} \right ) \sqrt{c{x}^{2}+bx+a}}}-2\,{\frac{Bbdx}{ \left ( 4\,ac-{b}^{2} \right ) \sqrt{c{x}^{2}+bx+a}}}-{\frac{A{b}^{2}e}{c \left ( 4\,ac-{b}^{2} \right ) }{\frac{1}{\sqrt{c{x}^{2}+bx+a}}}}-{\frac{B{b}^{2}d}{c \left ( 4\,ac-{b}^{2} \right ) }{\frac{1}{\sqrt{c{x}^{2}+bx+a}}}}+2\,{\frac{Ad \left ( 2\,cx+b \right ) }{ \left ( 4\,ac-{b}^{2} \right ) \sqrt{c{x}^{2}+bx+a}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x+A)*(e*x+d)/(c*x^2+b*x+a)^(3/2),x)

[Out]

-B*e*x/c/(c*x^2+b*x+a)^(1/2)+1/2*B*e*b/c^2/(c*x^2+b*x+a)^(1/2)+B*e*b^2/c/(4*a*c-b^2)/(c*x^2+b*x+a)^(1/2)*x+1/2
*B*e*b^3/c^2/(4*a*c-b^2)/(c*x^2+b*x+a)^(1/2)+B*e/c^(3/2)*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))-1/c/(c*x^
2+b*x+a)^(1/2)*A*e-1/c/(c*x^2+b*x+a)^(1/2)*B*d-2*b/(4*a*c-b^2)/(c*x^2+b*x+a)^(1/2)*x*A*e-2*b/(4*a*c-b^2)/(c*x^
2+b*x+a)^(1/2)*x*B*d-b^2/c/(4*a*c-b^2)/(c*x^2+b*x+a)^(1/2)*A*e-b^2/c/(4*a*c-b^2)/(c*x^2+b*x+a)^(1/2)*B*d+2*A*d
*(2*c*x+b)/(4*a*c-b^2)/(c*x^2+b*x+a)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(e*x+d)/(c*x^2+b*x+a)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 11.0751, size = 1060, normalized size = 8.41 \begin{align*} \left [\frac{{\left ({\left (B b^{2} c - 4 \, B a c^{2}\right )} e x^{2} +{\left (B b^{3} - 4 \, B a b c\right )} e x +{\left (B a b^{2} - 4 \, B a^{2} c\right )} e\right )} \sqrt{c} \log \left (-8 \, c^{2} x^{2} - 8 \, b c x - b^{2} - 4 \, \sqrt{c x^{2} + b x + a}{\left (2 \, c x + b\right )} \sqrt{c} - 4 \, a c\right ) + 4 \,{\left ({\left (2 \, B a - A b\right )} c^{2} d -{\left (B a b c - 2 \, A a c^{2}\right )} e +{\left ({\left (B b c^{2} - 2 \, A c^{3}\right )} d -{\left (B b^{2} c -{\left (2 \, B a + A b\right )} c^{2}\right )} e\right )} x\right )} \sqrt{c x^{2} + b x + a}}{2 \,{\left (a b^{2} c^{2} - 4 \, a^{2} c^{3} +{\left (b^{2} c^{3} - 4 \, a c^{4}\right )} x^{2} +{\left (b^{3} c^{2} - 4 \, a b c^{3}\right )} x\right )}}, -\frac{{\left ({\left (B b^{2} c - 4 \, B a c^{2}\right )} e x^{2} +{\left (B b^{3} - 4 \, B a b c\right )} e x +{\left (B a b^{2} - 4 \, B a^{2} c\right )} e\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{c x^{2} + b x + a}{\left (2 \, c x + b\right )} \sqrt{-c}}{2 \,{\left (c^{2} x^{2} + b c x + a c\right )}}\right ) - 2 \,{\left ({\left (2 \, B a - A b\right )} c^{2} d -{\left (B a b c - 2 \, A a c^{2}\right )} e +{\left ({\left (B b c^{2} - 2 \, A c^{3}\right )} d -{\left (B b^{2} c -{\left (2 \, B a + A b\right )} c^{2}\right )} e\right )} x\right )} \sqrt{c x^{2} + b x + a}}{a b^{2} c^{2} - 4 \, a^{2} c^{3} +{\left (b^{2} c^{3} - 4 \, a c^{4}\right )} x^{2} +{\left (b^{3} c^{2} - 4 \, a b c^{3}\right )} x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(e*x+d)/(c*x^2+b*x+a)^(3/2),x, algorithm="fricas")

[Out]

[1/2*(((B*b^2*c - 4*B*a*c^2)*e*x^2 + (B*b^3 - 4*B*a*b*c)*e*x + (B*a*b^2 - 4*B*a^2*c)*e)*sqrt(c)*log(-8*c^2*x^2
 - 8*b*c*x - b^2 - 4*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(c) - 4*a*c) + 4*((2*B*a - A*b)*c^2*d - (B*a*b*c -
2*A*a*c^2)*e + ((B*b*c^2 - 2*A*c^3)*d - (B*b^2*c - (2*B*a + A*b)*c^2)*e)*x)*sqrt(c*x^2 + b*x + a))/(a*b^2*c^2
- 4*a^2*c^3 + (b^2*c^3 - 4*a*c^4)*x^2 + (b^3*c^2 - 4*a*b*c^3)*x), -(((B*b^2*c - 4*B*a*c^2)*e*x^2 + (B*b^3 - 4*
B*a*b*c)*e*x + (B*a*b^2 - 4*B*a^2*c)*e)*sqrt(-c)*arctan(1/2*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(-c)/(c^2*x^
2 + b*c*x + a*c)) - 2*((2*B*a - A*b)*c^2*d - (B*a*b*c - 2*A*a*c^2)*e + ((B*b*c^2 - 2*A*c^3)*d - (B*b^2*c - (2*
B*a + A*b)*c^2)*e)*x)*sqrt(c*x^2 + b*x + a))/(a*b^2*c^2 - 4*a^2*c^3 + (b^2*c^3 - 4*a*c^4)*x^2 + (b^3*c^2 - 4*a
*b*c^3)*x)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + B x\right ) \left (d + e x\right )}{\left (a + b x + c x^{2}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(e*x+d)/(c*x**2+b*x+a)**(3/2),x)

[Out]

Integral((A + B*x)*(d + e*x)/(a + b*x + c*x**2)**(3/2), x)

________________________________________________________________________________________

Giac [A]  time = 1.29317, size = 198, normalized size = 1.57 \begin{align*} -\frac{B e \log \left ({\left | -2 \,{\left (\sqrt{c} x - \sqrt{c x^{2} + b x + a}\right )} \sqrt{c} - b \right |}\right )}{c^{\frac{3}{2}}} + \frac{2 \,{\left (\frac{{\left (B b c d - 2 \, A c^{2} d - B b^{2} e + 2 \, B a c e + A b c e\right )} x}{b^{2} c - 4 \, a c^{2}} + \frac{2 \, B a c d - A b c d - B a b e + 2 \, A a c e}{b^{2} c - 4 \, a c^{2}}\right )}}{\sqrt{c x^{2} + b x + a}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(e*x+d)/(c*x^2+b*x+a)^(3/2),x, algorithm="giac")

[Out]

-B*e*log(abs(-2*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*sqrt(c) - b))/c^(3/2) + 2*((B*b*c*d - 2*A*c^2*d - B*b^2*e
+ 2*B*a*c*e + A*b*c*e)*x/(b^2*c - 4*a*c^2) + (2*B*a*c*d - A*b*c*d - B*a*b*e + 2*A*a*c*e)/(b^2*c - 4*a*c^2))/sq
rt(c*x^2 + b*x + a)